If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-20=52
We move all terms to the left:
n^2+n-20-(52)=0
We add all the numbers together, and all the variables
n^2+n-72=0
a = 1; b = 1; c = -72;
Δ = b2-4ac
Δ = 12-4·1·(-72)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*1}=\frac{-18}{2} =-9 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*1}=\frac{16}{2} =8 $
| -2-6u=10-6u | | F(-4)=x-11 | | 16x+8+9+13x=26 | | t-32=2 | | 0.33m-2=-6 | | 3=-5.1x | | 5x+7=33x* | | n–4=–3 | | F(-10)=2x+5 | | 18=2(3x=3) | | 3x-1=8x-9 | | x=21+3/4 | | 2/3=7.5/x | | 15x-7=58 | | c-13=11 | | 19=7z-1-2z | | x+2/8=22 | | t−–1=3 | | q-23=9 | | 4(9x+7)=-32+6x | | -34=2(7y-3) | | 1-9w=-9w | | 7z+25=-7 | | F()=-3-2x | | 90+62+x+38=180 | | 4x+50=190 | | 5(b-7)=20 | | .k+7.2=3.4 | | 7+9b=35-5b | | 6s-13=83 | | a-77=23 | | 11+r=19 |